Prediction of chaotic time series based on Nystrom Cauchy kernel conjugate gradient algorithm

نویسندگان

چکیده

Chaotic time series can well reflect the nonlinearity and non-stationarity of real environment changes. The traditional kernel adaptive filter (KAF) with second-order statistical characteristics suffers performance degeneration dramatically for predicting chaotic containing noises outliers. In order to improve robustness filters in presence impulsive noise, a nonlinear similarity measure named Cauchy loss (CKL) is proposed, global convexity CKL guaranteed by half-quadratic (HQ) method. To convergence rate stochastic gradient descent avoid local optimum simultaneously, conjugate (CG) method used optimize CKL. Furthermore, address issue matrix network growth, Nyström sparse strategy adopted approximate then probability density rank-based quantization (PRQ) approximation accuracy. this end, novel PRQ (NCKCG-PRQ) algorithm proposed prediction paper. Simulations on synthetic real-world validate advantages terms filtering accuracy, robustness, computational storage complexity.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discrimination of time series based on kernel method

Classical methods in discrimination such as linear and quadratic do not have good efficiency in the case of nongaussian or nonlinear time series data. In nonparametric kernel discrimination in which the kernel estimators of likelihood functions are used instead of their real values has been shown to have good performance. The misclassification rate of kernel discrimination is usually less than ...

متن کامل

study of hash functions based on chaotic maps

توابع درهم نقش بسیار مهم در سیستم های رمزنگاری و پروتکل های امنیتی دارند. در سیستم های رمزنگاری برای دستیابی به احراز درستی و اصالت داده دو روش مورد استفاده قرار می گیرند که عبارتند از توابع رمزنگاری کلیددار و توابع درهم ساز. توابع درهم ساز، توابعی هستند که هر متن با طول دلخواه را به دنباله ای با طول ثابت تبدیل می کنند. از جمله پرکاربردترین و معروف ترین توابع درهم می توان توابع درهم ساز md4, md...

Multi-step Prediction Algorithm of Traffic Flow Chaotic Time Series Based on Volterra Neural Network

The accurate traffic flow time series prediction is the prerequisite for achieving traffic flow inducible system. Aiming at the issue about multi-step prediction traffic flow chaotic time series, the traffic flow Volterra Neural Network (VNN) rapid learning algorithm is proposed. Combing with the chaos theory and the Volterra functional analysis, method of the truncation order and the truncatio...

متن کامل

Ensemble Kernel Learning Model for Prediction of Time Series Based on the Support Vector Regression and Meta Heuristic Search

In this paper, a method for predicting time series is presented. Time series prediction is a process which predicted future system values based on information obtained from past and present data points. Time series prediction models are widely used in various fields of engineering, economics, etc. The main purpose of using different models for time series prediction is to make the forecast with...

متن کامل

Kernel Conjugate Gradient

We propose a novel variant of conjugate gradient based on the Reproducing Kernel Hilbert Space (RKHS) inner product. An analysis of the algorithm suggests it enjoys better performance properties than standard iterative methods when applied to learning kernel machines. Experimental results for both classification and regression bear out the theoretical implications. We further address the domina...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Chinese Physics

سال: 2022

ISSN: ['1000-3290']

DOI: https://doi.org/10.7498/aps.71.20212274